
Introduction

P. Calafiura
Event Data Model mini-Workshop

July 11, 2000

Data Model Integration
(from May Workshop)

• We more or less agree on
—Helpers to support multiple logical “views”
—Typed access (compile or run-time)
—WORM store: can only add to it

• ATLFast annotations, extend collections
—DataObject relationships: no “forward

pointers”
• We have to converge on

—What is returned? STL-like iterator, Handle,
plain C++ pointer/ref

—How do modules define what they want?
• (Default) Keys, Selectors

Data Models side-by-side

BaBar D0 Gaudi
Data Obj - Chunk<Coll> DataObject
Inter-Obj

Rel
Proxy LinkIndex

LinkPtr<T>
linkID

SmartRef<T>
Key AbsKey TKey string

Handle ? THandle ~SmartDataPtr
coll/iter - Chunk

Selector
ObjVector

Trans/Pers ProxyDict d0Ref Opaque
Addr/CnvSvc

directory - - IDataDir

Views, Proxies and the TDS
• View: client view of the stores, updated by the stores
• StoreGate: type-safe store access, implements cache policy
• Handle: smart ptr & iterators, basic client interface
• DataProxi: access control, build the DataObject on demand
• DBProxi, ReconProxi, …: concrete DataProxies

DataObject
T

Represents
DataProxi

DBProxi ReconProxi

StoreGateDataView

0..n1..n

DataStore
Owns

Refers to

Updates indexes

Access Dictionary Memory Mgmt

Handle

StoreGate Prototype *
• Focus on Interface. Use Gaudi TDS to implement it

• Key: optional, distinguish data objects of same type
Identifier id = at_id.lar_em();
LArCellContainer::Key key(id);

• Selector: optional, selection based on DataObject content
LArCellSelector* sel = new LArCellSelector(100);

• THandle: smart pointer, provide iterator access as well
THandle<LArCellContainer> myhandle(sel);

• StoreGateSvc: type-safe access to Gaudi TDS
StatusCode sc =
 storeGateSvc()->retrieveObject(key, myhandle);
cout << ”No of Cells=" << myhandle->size() << endl;
LArCellContainer::const_iterator first =
 myhandle->begin();
LArCellContainer::const_iterator last =
 myhandle->end();
for (; first != last; ++first)
 float energy= (*first)->energy();

Locating DataObjects in TES

• price to pay for reduced physical coupling
• strategies

—string in jobOptions
• simple, will it scale?

—use Key class
• compiler helps checking, but still need jobOptions

—Identify a DataObj using its type
• what if more than one (use Selectors)
• derived types!

—Identify a DataObj using its maker
• “connect” sintax, Object Networks, I/O ports

Simulated Data Flow (old stuff) *

• Identify Algos input
and output DataObj

• Hide TES details
—like a view

• Connect them using
“directives”

• Could also use as
marshalling layer
for multi-language

HitFinder
Params

Tracker
Params

put(Key<Hits>(HitFinderID))

get(Key<Hits>(HitFinderID))

HitFinder

Tracker

Connect(
 hitFinder.hits,
 tracker.hits)

objectIDs

Inter-Object Relationships

• No concrete design proposal yet

• use same access method as for direct Store
retrieval (e.g. Handle)

• reduce Disk/tape access (lazy evaluation)
• allow to cross technology boundaries?

—my ROOT nano-DST points to an Objectivity
collection

• use association classes (HitsOnTrack) for
relationships pointing “forward in time”

Next

• Srini: Discussion and Prototype Design
for TES Access

• Hong: StoreGate Prototype

